
MINIMALIST MODELLING AND CODING OF REVIT FOR
QUANTITIES

Sr. TANG Ki-cheung

FHKIS RPS(QS) FSZCEA MHKIVM

Director of K C Tang Consultants Ltd.
Quantity Surveyors . Construction Cost and Contract Consultants Ltd.

Hong Kong, www.kctang.com.hk, kctang@kctang.com.hk
presented at

BIM Seminar Kuala Lumpur 2015 – 5D BIM for the Construction Industry
on 22 January 2015 at Pullman Hotel Kuala Lumpur, Malaysia

organized by
Royal Institution of Surveyors Malaysia

Biography

Mr. Tang is a qualified professional quantity surveyor. He has over 38 years’
professional quantity surveying experience, handled over 740 No. projects in
Hong Kong and Mainland China, facilitated or co-facilitated over 25 No.
partnering / value management workshops, delivered speeches at over 35 No.
professional and technical seminars, and pre-qualification structured training
events, drafted the Standard Form of Contract for Maintenance and
Renovation Works First Edition 2013, chaired a task force to draft the

Standard Form of Domestic Sub-Contract since 2010, served as a council member of the
Hong Kong Institute of Surveyors QS Division since 1998 and of the Hong Kong Institute of
Value Management since 2010, chaired the Building Information Modelling Sub-Committee
under HKIS's QS Divisional Council for years 2012 - 2014, and chaired the Organizing
Committee for the International QS BIM Conference 2013 Hong Kong.

Abstract

One can model BIM to the last bolt and nut and can use third party software to take-off
quantities from the BIM model, but this would mean extra work and more license fees. This
presentation would show how a Revit model and its families of building blocks can be built,
coded and scheduled in a minimalist and self-explanatory manner appropriate and sufficient
enough for producing auditable dimensions and quantities for costing.

Keywords: coding, excel, qto, revit, schedules.

CAPABILITIES OF REVIT

Can Revit produce Bills of Quantities from Revit model with the press of a button? No, it is a
modelling software, not a BQ production software.

Can Revit model provide quantities? Yes. Revit being a building information modelling
(“BIM”) software defines its building blocks (“elements”) with parameters which contain a

lot of information including quantities of work and materials. That’s why BIM is called
“parametric modelling”.

Are the quantities in compliance with the standard method of measurement? No, the SMMs
of different countries vary.

Are the quantities provided by a Revit model sufficient and ready enough to be converted to
quantities according to the standard method of measurement? No. Some of the parameters are
not schedulable. The lengths, areas and volumes of elements provided by a Revit model may
not be the desired lengths, areas and volumes for SMM purposes. Concrete shoulders at
junctions of different mixes are not available. Formwork areas are not available. Wall and
ceiling finish areas are not readily available.

Then, how can we use Revit model to produce quantities for estimates or BQ? There are third
party quantity take-off software which can help extract quantities from a Revit model and
provide them for estimates, bills of quantities and other uses. However, one would still need
to write the descriptions and do some linking between the descriptions and the modelling
elements. The linking resembles on-screen taking-off. Depending on the suitability of the
model, the linking process may be quick or tedious. The beauty of such QTO software is that
once the descriptions and linking are done, any changes to the models can be monitored. The
downside is one has to invest in the license and training costs.

When descriptions are required to be written and quantities required to be classified
according to the SMM, Quantity Surveyors are still required.

Can we still get something useful from Revit models without third party QTO software? Yes,
it is the purpose of this paper to explain.

SHOULD QS BUILD MODELS?

Are Revit models readily available from Architects and Engineers? Probably not yet for most
of the cases. While QTO software can handle 2D CAD drawings, the on-screen taking-off
process would be more tedious for 2D CAD drawings.

Without a BIM model, should QS build up models?

QS has evolved from dimension sheet, cut-and-shuffle, schedule, scale rule, curvimeter,
planimeter, Lotus 1-2-3 spreadsheet, Excel worksheet, digitizer, on-screen taking off, etc.
There is no reason why the QTO must be textural and not graphical.

Having learned the basic tools, modelling the basic features with Revit is easier than with 2D
CAD software. It should be within the capability of the average QS to learn, only if he or she
has time.

For the bulk items like structure, fabric and finishes, the time to model and get quantities
would be shorter than the time to do manual taking off or on-screen taking off from 2D CAD
drawings.

Even if models are provided by Architects and Engineers, they may not have been modelled
in such a way suitable for QTO. QS should be able to inspect and understand the models in

order to use the models. Furthermore, in order not to disturb the integrity of the models
provided by the Architects and Engineers, QS would probably need his own set of “QS
parameters” and adjust the parameters for his own purposes.

Therefore, the answer should be yes, QS should build up models in the absence of models or
should be able to modify models to suit.

Should QS model every detail? No. Items like windows, doors, fittings and furniture vary in
details between different projects and take some longer time to model. All the QS needs is the
number for writing up full descriptions or measuring the component quantities per number
with reference to the detailed drawings provided by the Architects and Engineers.

It should however be noted that the level of details of the models if provided by the
Architects and Engineers should be no less than those traditionally provided for 2D CAD
drawings for estimating, tendering and construction. This should be a simpler benchmark
than whatever Level of Development or Level of Details (LOD) definitions.

HOW MUCH DO WE NEED TO MEASURE?

We may measure every bit of concrete, formwork, finishes, etc. exactly net when we measure
the concrete members or room finishes. However, see the following table for the inter-
relationship between dimensions and quantities:

Description Primary
Qty

Multiplier Unit

Wall - grade C40 - T thick (centre line area) A Super
 Reinforced concrete Grade C40 A T Cube
 Wall formwork A 2 Super
 To deduct junction with slab if wall

measured through slab

 To adjust for openings
 To measure end of wall

Column - grade C40 - W wide x D deep
(height)

H Run

 Reinforced concrete Grade C40 H W x D Cube
 Column formwork (junction with slab

to deduct if measured through slab)
H (W + D) x 2 Super

 To deduct junction with slab if column
measured through slab

Suspended beam - grade C30 - W wide x D
deep - S slab (length)

L Run

 Reinforced concrete Grade C30 L W x (D – S) Cube
 Beam formwork below slab L W + (D – S) x 2 Super
 Deduct slab formwork L W x -1 Super
 To adjust for shoulders to higher grade

walls or columns

Suspended slab - grade C30 - S thick (area) A Super
 Reinforced concrete Grade C30 A S Cube

Description Primary
Qty

Multiplier Unit

 Slab formwork A 2 Super
 To deduct junctions with walls,

columns and beams

 To adjust for openings
Room - finishes group A - net plan area A Super

 Floor finishes A Super
 Ceiling finishes A Super
 To adjust for beam sides
 To adjust for door opening
 To adjust for work behind fixtures

Room - finishes group A - perimeter including
columns - H room height - S skirting height

L Run

 Skirting L Run
 Wall finishes L H – S Super
 To adjust for beam sides and ends
 To adjust for openings
 To adjust for work behind fixtures

Window W1 - W wide x H high opening - T
thick concrete wall - Room A

N Nr

 Window W1, fully described N Nr
 Glazing N Detailed

dimensions of W1
Super

 Deduct T wall concrete N W x H x T x -1 Cube
 Deduct wall formwork N W x H x 2 Super
 Add jambs and soffit formwork, T thick

(or boxing number as appropriate)
N W + H x 2 Run

 Deduct Room A wall finishes
(assuming no dado)

N W x H x -1 Super

 Add Room A wall finishes to window
reveal

N (W + H x 2) x
reveal width

Run

 Add Room A window cill N W Run
Door D1 - W wide x H high opening - T thick
brickwall - Room finishes group A

N Nr

 Door D1, fully described N Nr
 Deduct T thick brickwall N W x H x -1 Super
 Add lintol N W + end laps x 2 Run
 Deduct Room A skirting N W Run
 Deduct Room A wall finishes N W x H x -1 Super
 Add Room A floor finishes N W x part of T as

appropriate
Run

 Door frames, architraves, painting,
dowels, holdfasts, etc.

N Detailed
dimensions of D1

As
appropriate

The above shows that:

 We may measure the aggregate areas of different wall and slab thicknesses, aggregate
lengths of different column and beam sections, aggregate plan areas and girths of
rooms of the same finishes first (we may call these “primary quantities”, those
without bullets), before converting them into concrete, formwork and finishes
quantities (we may call these “secondary quantities”, those with bullets)

 We may measure the overall gross quantities first before making detailed adjustments
 Some adjustments can be made when we measure other elements, e.g. deduct slab

formwork using beam quantities, adjust for wall openings when using window and
door quantities, etc.

 The descriptions can be very short only to the extent of containing sufficient
information for the purposes of the multiplier.

It follows that instead of expecting a Revit model to provide the quantity of every BQ item,
we can just extract the primary quantities adequately described from the Revit model and use
Excel to handle the secondary processing. The need for modelling to the last bolt and nut is
reduced.

CODING AND WHY?

To convey the information from Revit to Excel, it would be good if the information is
described in a concise, precise and consistent manner.

All Revit elements are classified and described by Family (Floor, Basic Wall, M_Fixed in the
following images) and Types (those under the Search prompts in the images), but these
descriptions may not contain the information the way we want and we would need to change
them anyway.

Furthermore, if the model is provided by the Architect or Engineer and we do not want to
change their descriptions of Families and Types, we may need to create a parameter to
contain our the precise and consistent information we need.

The following coding (“QS Desc”) should be sufficient and self-explanatory enough yet short
and simple to represent the primary quantities in the above table:

 WA-C40-100
 CL-C40-500x600
 BM-C30-300500 : 120SL
 SL-C30-120
 RM-F-A

 RM-P-A
 WD-W1-1200x1500 : IWConc100-RoomA
 DR-D1-920x2200 : IWBrick125-RoomA

This way of coding should be more intuitive and understandable than those cryptic codes
using (alpha) numeric codes.

SCHEDULES / QUANTITIES

Revit has the capabilities to produce many schedules, under the project browser:

With so many schedules to represent a modelled project, the choices of the columns in the
schedules must be well co-ordinated. We cannot practically transfer the individual total
quantity from the schedules manually one by one for billing purposes. This would be prone to
errors.

The above schedule has been designed such that:

 The left 6 columns are consistently designed for all schedules
 The Level and Mark are for locational identification of the quantities, like our

dimension sheets, for traceability
 Only the Type, QS Tag, QS Qty and QS Unit are really essential for billing
 The other columns are there for calculating the QS Qty or cross-checking, and can

vary from schedules to schedules.

Revit can also export the schedules to a txt file which can
then be imported by Excel to become a worksheet for
use:

However, the export can only handle one schedule at a time. This would be a tedious process
to export many schedules one at a time and merge all schedules together.

A macro (appended at the end of this paper) has been written whereby:

 All the schedules will be exported by a single command to one Excel file with one
worksheet per schedule

 Schedules intended to provide the uniform left 6 columns for billing should have their
names prefixed by “Dim – ” and the macro will combine the 3 columns of Type, QS
Tag and QS Unit into a single “QS Desc” column in the style of “Type : QS Tag : QS
Unit”

 An “All Dim” worksheet will be created to repeat all information contained in the
“Dim – ” schedules

 A “QS Desc” worksheet will be created to contain a list of the unique QS Desc and
their total QS Qty

 The total QS Qty will be useful for quick reference

 The Excel file name will contain the time down to the second it is created so that a re-
export will not overwrite an existing Excel file.

BILLING WORKFLOW

The primary quantities in the “All Dim” worksheet can be further processed for billing. The
workflow are as follows:

 Data (extraction from Revit schedules) Primary Qty (processing)
Secondary Qty (processing) Estimate or BQ

 Data (direct measurement without using Revit) Primary Qty (processing)
Secondary Qty (processing) Estimate or BQ

PRIMARY WORKSHEET

The first 5 columns only of the “All Dim” worksheet shown above are copied to the lower
region of a “Primary worksheet”:

The item sequence can be kept unchanged for easy referencing, or may be sorted temporarily.
The Seq column helps re-sort them back to the original sequence.

Highlighted columns are not used for data exported from Revit Schedules because they are
reserved for direct measurement at the upper region of the worksheet, where the formula used
for Row Qty, say at Row 6, is =PRODUCT(E6:J6), meaning product of Dim1 …. Times3.

SECONDARY WORKSHEET

Column A only of the “QS Desc” worksheet shown above is copied to Column B in the lower
region of a “Secondary worksheet”:

right portion

The upper region of the Secondary worksheet is similar to the upper region of the Primary
worksheet for direct measurement which can straightly go to the Estimate or BQ without
further processing like the lower region.

Further processing of the Primary Qty is done in the lower region.

By using a special formula in Column D in the lower region, each of the Primary Qty here is
the total of the Primary Qty of the same QS Desc in the Primary worksheet. There is no need
to sort and group the lines in the Primary worksheet in order to give group total per each QS
Desc.

The special formula is actully very simple. For example, the Primary Qty at Row 14 is

=SUMIF(Primary!J5:J181;$C14;Primary!$K$5:$K$181)

where $C14 is the QS Desc on the same row, Primary!K5:K181 is the range of QS Desc
in the Primary worksheet, and Primary!J5:J181 is the range of Row Qty in the Primary
worksheet. If the QS Desc in the Primary worksheet matches the QS Desc in the Secondary
worksheet, then add in the corresponding Row Qty in the Primary worksheet.

The Code will be the code of the Estimate or BQ items.

Again, the Row Qty is the product of all Dims and Times of the same row, using the
“=Product()” function. They are also called Secondary Qty.

The columns like Times Used in BQ, BQ Unit, BQ Descriptions are making referece to the
Estimate or BQ worksheet for error checking.

The Floor columns are for analysis of quantities by floors.

ESTIMATE OR BQ WORKSHEET

The Estimate or BQ worksheet is like this:

Similar to the Primary Qty or the Secondary worksheet, by using a special formula, each of
the Qty here is the total of the Secondary Qty of the same Code in the Secondary worksheet.

The special formula is in the form of

=ROUND(SUMIF(Secondary!J6:J176;$C41;Secondary!$L$6:$L$176);0)

Basically, it means that if the Code in the Secondary worksheet matches the Code in the
Estimate or BQ worksheet, then add in the corresponding Row Qty in the Secondary
worksheet.

The Floor columns are for internal references only.

When issuing the Estimate or BQ in Excel softcopy, the formulae should be changed to
values and other internal reference data should be removed with the empty columns hidden.

PROJECT UNITS

Revit schedules show the units against numerical values by default. It would not be
convenient if the numerical values are exported to Excel worksheet for further calculations
because they would not be recognised as numerical values unless the units are removed

A solution would be to define two decimal places for Area and three decimal places for
Volume with the units hidden, so as to make them self-explanatory without the need of units.

To define the project units (in metric): click Manage > Project Unit icon

PARAMETERS

Parameters provided by Revit are called system parameters, which cannot be changed though
some permit entry of values.

There are two types of parameters which one can define at the Family, Type or Instance
level:

 Project Parameters: can appear in schedules but not in tags, but cannot be shared by
other projects and families

 Shared Parameters: can appear in schedules and tags, shared by multiple projects and
families, and exported to ODBC.

Shared Parameters are more versatile and useful.

For some Families and Types, a shared parameter can be added to the properties directly.
However, for others, only project parameters can be added to the properties, but a project
parameter can borrow a shared parameter, so the shared parameter can still be used but
indirectly.

PROJECT PARAMETERS

To add project parameters: select Manage > Settings > Project Parameters.

Note from the above that either a project parameter or a shared parameter can be added.

SHARED PARAMETERS

To add shared parameters: select Manage > Settings > Shared Parameters.

Select Create, go to a convenient folder, name a Shared Parameter file, e.g.
"QS_shared_params", which is a txt file, save and return back to the screen on the left.

Select New under Group, name a New Parameter Group, e.g. "QS", and select OK.

Select New under Parameters, name a new parameter, e.g. “QS Tag”, select Common under
Discipline, select Text under Type of Parameter, and select OK.

DEFINING SCHEDULE COLUMNS

Revit schedule columns (fields) can be selected from “Available fields” (parameters). If there
are no suitable fields available, new columns can be defined either by “Add Parameter” or
“Calculated Value”.

LEVEL AND MARK

Level and Mark parameters are generally available with elements.

TYPE

Elements are classified by Family and generally have a Type parameter available for use in
the schedules. However, instead of using Family and Type as provided by Revit, short code
like descriptions are used for Type. To simplify matters, such descriptions should represent
both the information of Family and Type.

QS TAG

QS Tag is a new parameter specially added to supplement the information of “Type”. Select
Add Parameter as shown above to open the Parameter Properties window. Select Shared
parameter > Select to open another window. Select the Parameter Group QS if it already
exists, otherwise create it as described for Shared Parameters. Select QS Tag if it already
exists, otherwise create it as described for Shared Parameters by selecting Edit. Select OK to
go back to the Parameter Properties window.

Check “Add to all elements in the selected categories” and Instance. Select Identity Data
under “Group parameter under”, and select OK. Move up the newly created parameter on the
menu to the desired position.

QS QTY AND QS UNIT

QS Qty is a calculated field borrowing its value from other parameters like Count, Length,
Area, Volume, etc. The unit of QS Qty can be Nr, m, m2, m3, i.e. a mixture. However, Revit
does not permit a column of such mixed nature. Since QS Qty should have 2 decimal places,
therefore, it is artificially defined as an Area parameter which according to the setting of the
Project Units described earlier will show 2 decimal places. However, tricks have to be done
as shown below to make their numerical values still correct even though they are recognised
by Revit as Area parameters:

QS Unit is a calculated field specially used to tell the real unit of QS Qty. The formulae are
simply “m” for “m”, “m2” for “m2”, “m3” for “m3”, “Nr” for “Nr”, etc.

It may be possible for some elements that we need their Count, Length, Area as QS Qty, e.g.
Column Nr and Column Length, Wall Area and Wall Length. To handle this, the same

schedule can be duplicated only with the QS Qty and QS Unit suitably adjusted to suit while
all other fields can be kept the same

WALL SCHEDULES

A Wall Area schedule gives wall areas as QS Qty for the generation of concrete volume and
formwork area:

A Wall Length schedule gives wall lengths as QS Qty for the processing of quantities at
junctions with slabs:

Level is actually the base constraint renamed in the schedule heading. This is not absolutely
necessary for billing purposes.

QS Tag is for entering information like the slab thickness and whether the wall is at slab edge
to facilitate adjustment for slab and wall junctions.

Length, Width (i.e. thickness), Area and Volume are system parameters.

Note that Area is not always equal to the elevation areas along the centre line as explained
later and would need special treatment.

Wall height is not available probably because the height can vary for a wall.

Lengths at wall ends are not available. This is still to be resolved.

Lengths around openings are not available. This is to be resolved through giving more
information on the Door and Window Schedules. For blank openings, this is still to be
resolved.

QS Mean Area is equal to Volume / Width.

“Mean Area / Length” is equal to QS Mean Area / Length.

REPRESENTATION OF WALL LENGTH, AREA AND VOLUME

Note the wall length, area and volume have the following representations:

 Wall length given Area given Volume given
Straight wall
e.g. 12 m long x 4 m
high x 300 mm thick

Centre line of wall
= 12 m

Elevation area on one
face
= 12 x 4 m
= 48 m2

Area along centre
line x wall thickness
= 12 x 4 x 0.3 m
= 14.4 m3

Wall L-shaped on
plan with mitre joint
e.g. 400 mm wall 8
m long + 300 mm
wall 5 m long, both x

Centre line of wall
with the corner
shared between the
two wings
= 7.85 + 4.80 m

Elevation area based
on the extreme
length of each wing
= 8 x 4 + 5 x 4 m
= 32 + 20 m2

Area along centre
line with the corner
shared x wall
thickness
= 7.85 x 4 x 0.4 +

 Wall length given Area given Volume given
4 m high = 12.65 m = 52 m2 4.80 x 4 x 0.3

= 12.56 + 5.76 m3
= 18.32 m3

Wall L-shaped on
plan with butt joint
e.g. 8 m x 400 mm
wall + 4.6 m x 300
mm wall, both x 4 m
high

Same as above Elevation area based
on the self length of
each wing
= 8 x 4 + 4.6 x 4 m
= 32 + 18.4 m2
= 50.4 m2

Area based on self
length x wall
thickness
= 8 x 4 x 0.4 + 4.6 x
4 x 0.3
= 32 x 0.4 + 18.4 x
0.3
= 12.80 + 5.52 m3
= 18.32 m3

Wall L-shaped on
plan with butt joint
e.g. 7.7 m x 400 mm
wall + 5 m x 300 mm
wall, both x 4 m high

Same as above Elevation area based
on the self length of
each wing
= 7.7 x 4 + 5 x 4 m
= 30.8 + 20 m2
= 50.8 m2

Area based on self
length x wall
thickness
= 7.7 x 4 x 0.4 + 5 x
4 x 0.3
= 30.8 x 0.4 + 20 x
0.3
= 12.32 + 6 m3
= 18.32 m3

Wall T-off from
another wall
e.g. 4.6 x 300 mm
wall T-off from 400
mm wall

Centre line of T-off
wall measured to
centre line of main
wall
= 4.6 + 0.2 = 4.8 m

Elevation area based
on the self length of
T-off wall
= 4.6 x 4 m
= 18.4 m2

Area based on self
length x wall
thickness
= 4.6 x 4 x 0.3
= 5.52 m3

The Area and Volume do not make deduction at the junction with floor slab.

Whether the L-shaped wall is mitre or butt jointed, it does not make any difference to the
Volume, but the Areas are different for the three cases.

The area of formwork to sides of wall should be equal to the elevation area along the centre
line x height x 2 = (7.85 + 4.8) x 4 x 2 = 50.6 m2 x 2. The Areas given by Revit for the three
cases of L-shaped wall are useless for this purpose.

Wall junctions on plan:

 It is preferred to use mitre joints at corner junction of walls.
 To change the type of wall junctions on plan: select a wall > Wall Joins.

 Select Butt to give a butt joint:

 Select Previous or Next to change the direction of the joint:

 Select Miter for a mitre joint:

After all these discussions, it seems that Volume is a more reliable value to use than Area.
Therefore, QS Qty using Wall Area for Estimate and BQ purposes takes the value of Volume
/ Width, i.e. the QS Mean Area.

QS Qty using Wall Length is to be used for adjustments for the wall and slab junction, it
appears that Length is not accurate enough but close enough and is the only choice available.
It is tolerated for the time being.

ARCHITECTURAL WALLS

Architectural walls can be modelled just like a structural wall. However, unlike structural
walls which can be taken as going up to the floor level because they usually have stronger

concrete grade, architectural walls should go up to beam or ceiling soffit only and not the
floor level. Revit does not have a feature to let architectural walls automatically go up and
stop there. Therefore, architectural walls have to be modelled one by one to ensure correct
height.

With so many architectural walls within a building, this is a time consuming process and is
therefore prone to errors.

FLOOR SLAB AND STRUCTURAL WALL JUNCTIONS

When modelling, after selecting a floor slab > > > Yes, the following dialogue
will appear and will only appear if there are structural walls underneath the slab:

If “Yes” is selected, the volume of the structural walls below will be measured to the
underside of the slab, as shown for the wall on the left below.

If “No” is selected, the volume of the structural walls below will be measured to the top of
the slab, as shown for the wall on the right below, but the reported volume of the slab will
not be reduced.

The reported height of the structural walls when defined to be to the top of the slab will not
be changed in both cases.

In theory, when a structural wall is attached to the bottom of a floor slab, the wall top will
move when the floor slab is moved up or down.

Furthermore, the Modify Wall menu also has the following choices.

However, the behaviour after attaching or detaching walls using the above slab or wall
commands is not quite definite every time. Furthermore, since the slab and wall junctions will
need to be adjusted in any case, when encountering the above dialogue when editing slab
boundary, it is better to answer “No” to retain the default treatment.

STRUCTURAL COLUMN SCHEDULES

A Structural Column Length schedule gives column lengths as QS Qty for the generation of
concrete volume and formwork area:

A Structural Column Number schedule gives column numbers as QS Qty for the processing
of quantities at junctions with slabs:

Column Location Mark is a system parameter which gives the grid line references. This is
used here instead of the usual Mark.

QS Tag is for entering information like the slab thickness and whether the column is an edge
or corner column to facilitate adjustment for slab and column junctions.

For a column defined to be of floor to floor height, Volume is a system parameter which
gives the volume of concrete below slab, while Length is a system parameter which gives the
floor to floor height.

Since the floor to floor height is needed, therefore “QS Qty” takes the value of Length for
Column Length schedule.

It is strange that the column width (b) and depth (h) are not available to the properties
window and schedules. Therefore, two shared parameters QS Width and QS Depth have been
added to the Family Type parameters to make them available to the schedules to facilitate
error checking.

QS App Slab Tk = Length - Volume / (QS Width * QS Depth) which is useful for indicating
the approximate slab thickness for counter-checking any errors in positioning the columns.

Vol / (Wi x Dp) = Volume / (QS Width * QS Depth) gives the length of column below slab.

STRUCTURAL FRAMING LENGTH SCHEDULE

Structural Framing Length schedule is basically a beam length schedule:

For beams, there are two parameters of Length and Cut Length. Only the Cut Length is the
length between supporting columns or walls. QS Qty for Beam Length takes the value of Cut
Length.

Similar to structural columns, the beam width (b) and depth (h) are not available to the
properties window and schedules. Therefore, two shared parameters QS Width and QS Depth
have been added to the Family Type parameters to make them available to the schedules to
facilitate error checking.

FLOOR SLAB AREA SCHEDULE

A Floor Slab Area schedule can be:

QS Tag is for the entry of information about the strutting height.

QS Qty takes Area.

DOOR AND WINDOW SCHEDULES

A Door Number schedule can be:

A Window Number schedule can be:

QS Tag is for the entry of information about the walls housing the doors and windows to
facilitate future measurement of formwork to jambs and soffit, boxing and lintels.

ROOM SCHEDULES

The default room schedules provided by Revit can give Floor Area and Perimeter, but not
the Nett Ceiling and Beam surface areas, nor wall and column surface areas:

By defining the floor level above a room as the Upper Limit, and
entering the slab thickness in negative value as the Limit Offset, the
reported Unbounded Height will give the floor to ceiling soffit
height, which should be good for generating the wall and column
surface areas. Adjustment would need to be made for the beam
surfaces and end junctions. Adjustment for window and door
openings may be taken care of when processing the window and
door quantities.

To provide QS Qty for floor, wall, ceiling and skirting, 4 separate

schedules are adapted from the Room Schedule.

The Room Floor Finishes Area schedule:

The Room Ceiling Finishes Area schedule:

The Room Wall Finishes Area schedule, with skirting area to be deducted from wall area:

The Room Perimeter Length schedule for skirting:

Room elements do not have a Type parameter. A calculated field has been created for Type,
which takes the names of the finishes as its values.

EXPORTING SCHEDULES TO EXCEL

The following is a macro to export all schedules to one Excel file as described earlier.

To install, select: Manage ribbon > Macros
- Macro Manager > Create - Module > enter
KCTCL at Module name > OK > Edit to
open the SharpDevelop coding screen.

Copy the codes below to the SharpDevelop
coding screen and overwrite the existing
codes generated by Revit.

Select SharpDevelop’s Project > Add
Reference. Search for Microsoft Office
Interop Excel. Click Select > OK to
confirm. Select Build > Build Solution.

Go back to Revit’s macro manager menu. Select the newly created macro, and select Run.

/*
 * Created by SharpDevelop.
 * User: K C Tang
 * Date released for use : 31/12/2014
 * Date last revised: 19/1/2015
 *
 * To change this template use Tools | Options | Coding | Edit Standard Headers.
 */
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Autodesk.Revit.DB;
using Autodesk.Revit.DB.Architecture;
using Autodesk.Revit.UI;
using Autodesk.Revit.UI.Selection;
using Excel = Microsoft.Office.Interop.Excel;

namespace KCTCL
{
 [Autodesk.Revit.Attributes.Transaction(Autodesk.Revit.Attributes.TransactionMode.Manual)]
 [Autodesk.Revit.DB.Macros.AddInId("E77FD3DE-05E8-4FD3-B85A-116F5B6F2EEF")]
 public partial class ThisApplication
 {
 private void Module_Startup(object sender, EventArgs e)
 {

 }

 private void Module_Shutdown(object sender, EventArgs e)
 {

 }

 #region Revit Macros generated code
 private void InternalStartup()
 {
 this.Startup += new System.EventHandler(Module_Startup);
 this.Shutdown += new System.EventHandler(Module_Shutdown);
 }
 #endregion

 public void ExportAllSchedulesToOneExcel()
 {
 // initilize variables
 char[] char_tab = new char[] { '\t' };
 char[] char_quote = new char[] { '"' };
 string text_line;
 string qs_desc;
 decimal qs_qty;
 List<string> text_line_list = new List<string>();
 SortedList<string, decimal> qs_desc_list = new SortedList<string, decimal>();
 object default_value = System.Reflection.Missing.Value;
 // select active document
 Document doc = this.ActiveUIDocument.Document;
 // get filename from doc.Title
 string filename_no_ext = doc.Title;
 // add ".rvt" temporarily doc.Title not ending with ".rvt"
 // because file explorer hides the extension
 if (!filename_no_ext.EndsWith(".rvt"))
 {
 filename_no_ext = filename_no_ext + ".rvt";
 }
 // get active folder name by removing the full file name
 // from the full pathname which contains the full file name
 string folder_name = doc.PathName.Replace(filename_no_ext, "");
 // change file extension to the current datetime string
 // to avoid overwriting existing files
 filename_no_ext = filename_no_ext.Replace(".rvt",
 DateTime.Now.ToString("-yyyyMMdd-HHmmss"));

 // initilize Excel variables
 Excel.Application xlApp;
 Excel.Workbook xlWorkBook;
 Excel.Worksheet xlWorkSheet;
 Excel.Worksheet xlWorkSheetAllDim;
 Excel.Range xlSelectedRange;
 xlApp = new Excel.Application();
 // check whether Excel is installed
 if (xlApp == null)
 {
 TaskDialog.Show("ExportAllSchedulesToOneExcel", "Excel is not installed!!");
 return;
 }
 // create new workbook which by default contains at least 1 worksheet
 xlWorkBook = xlApp.Workbooks.Add(default_value);
 // initialize 2 worksheet variables, all referring to Sheet1 for the time being
 xlWorkSheetAllDim = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(1);
 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.get_Item(1);
 // rename Sheet1 to contain contents of all future worksheets
 // with names starting with "Dim - "
 xlWorkSheetAllDim.Name = "All Dim";
 // make Excel file visible
 xlApp.Visible = true;
 // maximize workbook window
 xlApp.ActiveWindow.WindowState = Excel.XlWindowState.xlMaximized;
 // read viewschedules in active document
 ViewScheduleExportOptions opt = new ViewScheduleExportOptions();
 FilteredElementCollector col = new FilteredElementCollector(doc).OfClass(typeof(ViewSchedule));
 if (col.ToElementIds().Count == 0)
 {
 TaskDialog.Show("ExportAllSchedulesToOneExcel", "No schedule available!!");
 // close workbook without saving
 xlWorkBook.Close(false, default_value, default_value);
 xlApp.Quit();
 // release objects
 releaseObject(xlWorkSheet);
 releaseObject(xlWorkSheetAllDim);
 releaseObject(xlWorkBook);
 releaseObject(xlApp);
 return;
 }
 // sort elements in col in descending order
 IOrderedEnumerable<ViewSchedule> sorted_col =
 from ViewSchedule vs in col orderby vs.Name ascending select vs;
 // process schedule in ascending order
 int all_dim_row_num = 0;
 foreach (ViewSchedule vs in sorted_col)
 {
 // check if schedule name too long
 if (vs.Name.Length > 31)
 {
 TaskDialog.Show("ExportAllSchedulesToOneExcel",
 vs.Name + "\n" + "Schedule name should not be more than 31 characters!!");
 // release objects
 releaseObject(xlWorkSheet);
 releaseObject(xlWorkSheetAllDim);
 releaseObject(xlWorkBook);
 releaseObject(xlApp);
 return;
 }
 }
 foreach (ViewSchedule vs in sorted_col)
 {
 if (vs.Name.StartsWith("<"))
 {
 // skip schedule with name beginning with "<", such as "<Revision Schedule>"
 } else
 {
 // reduce filename length longer than 31
 if (31 < vs.Name.Length)
 {
 vs.Name = vs.Name.Substring(0, 14) + " name length > 31";
 }
 // replace special character with "_"
 vs.Name = vs.Name

 .Replace(':', '_')
 .Replace('*', '_')
 .Replace('?', '_')
 .Replace('/', '_')
 .Replace('\\', '_')
 .Replace('[', '_')
 .Replace(']', '_');
 // export schedule to txt file
 vs.Export(folder_name, filename_no_ext + ".txt", opt);
 // add a worksheet
 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.Add(default_value);
 // move it to become the last worksheet
 xlWorkSheet.Move(default_value, xlWorkBook.Worksheets[xlWorkBook.Worksheets.Count]);
 // name worksheet as schedule name
 xlWorkSheet.Name = vs.Name;
 // initialize variables
 bool bold_flag = true;
 int row_num = 0;
 int array_count = 0;
 int[] QS_Desc_Col = new int[4];
 string value = "";
 // read txt file
 System.IO.StreamReader file = new System.IO.StreamReader(folder_name
 + "\\" + filename_no_ext + ".txt");
 // read process each line
 while((text_line = file.ReadLine()) != null)
 {
 // increase row_num
 row_num += 1;
 // convert line into list by:
 // splitting line when tab is encountered
 // trimming away quotation marks
 text_line_list = text_line.Split(char_tab).Select<string, string>(s => s.Trim(char_quote)).ToList();
 // if worksheet name starts with "Dim - "
 if (vs.Name.StartsWith("Dim - "))
 {
 // check line 2 for 3 columns to be combined to form QS Desc
 if (row_num == 2)
 {
 for (array_count = 0; array_count < text_line_list.Count; array_count++)
 {
 // store the column numbers of the desired columns
 value = text_line_list[array_count];
 switch (value)
 {
 case "Type" :
 QS_Desc_Col[0] = array_count;
 break;
 case "QS Tag" :
 QS_Desc_Col[1] = array_count;
 break;
 case "QS Unit" :
 QS_Desc_Col[2] = array_count;
 break;
 case "QS Qty" :
 QS_Desc_Col[3] = array_count;
 break;
 default:
 break;
 }
 }
 }
 // if not first row, and QS Unit and Type not empty
 if ((row_num != 1) && (QS_Desc_Col[2] != 0) && (QS_Desc_Col[1] != 0))
 {
 // combine the 3 columns into "Type : QS Tag : QS Unit" format
 qs_desc =
 text_line_list[QS_Desc_Col[0]] + " : " +
 text_line_list[QS_Desc_Col[1]] + " : " +
 text_line_list[QS_Desc_Col[2]];
 text_line_list[QS_Desc_Col[0]] = qs_desc;
 // assign qs_qty
 qs_qty = 0;
 if (QS_Desc_Col[3] != 0)
 {

 if (decimal.TryParse(text_line_list[QS_Desc_Col[3]], out qs_qty)){}
 }
 // if not equal to "Type : QS Tag : QS Unit" and not " : : "
 if ((qs_desc != "Type : QS Tag : QS Unit") && (qs_desc != " : : "))
 {
 // add qs_desc and qs_qty to list if not already there
 // add qs_qty if already there
 if (!qs_desc_list.ContainsKey(qs_desc))
 {
 qs_desc_list.Add(qs_desc, qs_qty);
 }
 else
 {
 qs_desc_list[qs_desc] += qs_qty;
 }
 }
 // remove QS Tag and QS Unit
 text_line_list.RemoveAt(QS_Desc_Col[2]);
 text_line_list.RemoveAt(QS_Desc_Col[1]);
 }
 }
 // input into individual worksheet
 // assign value of first column with row num
 xlWorkSheet.Cells[row_num, 1] = row_num;
 // process other columns
 for (array_count = 0; array_count < text_line_list.Count; array_count++)
 {
 value = text_line_list[array_count];
 // array_count + 2 so that the first column is column B instead of A
 xlWorkSheet.Cells[row_num, array_count + 2] = value;
 xlSelectedRange = xlWorkSheet.get_Range(cellAddress(row_num, array_count + 2));
 if (value.Contains("."))
 {
 xlSelectedRange.NumberFormat = numFormat(value);
 }
 // bold first 2 lines, otherwise stop bold
 if (row_num <= 2)
 {
 xlSelectedRange = xlWorkSheet.get_Range("A" + row_num, "B" + row_num);
 xlSelectedRange.EntireRow.Font.Bold = true;
 } else
 {
 bold_flag = false;
 }
 }
 // input into All Dim worksheet for schedules with names starting with "Dim - "
 if (vs.Name.StartsWith("Dim - "))
 {
 all_dim_row_num += 1;
 // assign value of first column with row num
 xlWorkSheetAllDim.Cells[all_dim_row_num, 1] = all_dim_row_num;
 // process other columns
 for (array_count = 0; array_count <= text_line_list.Count - 1; array_count++)
 {
 value = text_line_list[array_count];
 // array_count + 2 so that the first column is column B instead of A
 xlWorkSheetAllDim.Cells[all_dim_row_num, array_count + 2] = value;
 xlSelectedRange = xlWorkSheetAllDim.get_Range(cellAddress(all_dim_row_num, array_count + 2));
 if (value.Contains("."))
 {
 xlSelectedRange.NumberFormat = numFormat(value);
 }
 }
 // bold first 2 lines from each individual worksheet
 if (bold_flag)
 {
 xlSelectedRange = xlWorkSheetAllDim.get_Range("A" + all_dim_row_num, "B" + all_dim_row_num);
 xlSelectedRange.EntireRow.Font.Bold = true;
 }
 }
 }
 // autofit column widths
 xlWorkSheet.Columns.EntireColumn.AutoFit();
 // close txt file
 file.Close();

 // delete txt file
 System.IO.File.Delete(folder_name + "\\" + filename_no_ext + ".txt");
 }
 }
 // autofit column widths of All Dim worksheet
 xlWorkSheetAllDim.Columns.EntireColumn.AutoFit();
 // move it to become the first worksheet
 xlWorkSheetAllDim.Move(xlWorkBook.Worksheets[1]);
 // add and name a worksheet to contain unique QS Desc
 xlWorkSheet = (Excel.Worksheet)xlWorkBook.Worksheets.Add(default_value);
 xlWorkSheet.Name = "QS Desc";
 int row_num2 = 1;
 xlWorkSheet.Cells[row_num2, 1] = "Type : QS Tag : QS Unit";
 xlWorkSheet.Cells[row_num2, 2] = "QS Qty";
 xlSelectedRange = xlWorkSheet.get_Range("A1","B1");
 xlSelectedRange.Font.Bold = true;
 xlSelectedRange = xlWorkSheet.get_Range("B1");
 xlSelectedRange.EntireColumn.NumberFormat = "0.00";
 // input each qs_desc into column A;
 foreach (KeyValuePair<string, decimal> kvp in qs_desc_list)
 {
 row_num2 += 1;
 xlWorkSheet.Cells[row_num2, 1] = kvp.Key;
 xlWorkSheet.Cells[row_num2, 2] = kvp.Value;
 }
 // autofit column widths of QS Desc worksheet
 xlWorkSheet.Columns.EntireColumn.AutoFit();
 // move it to become the first worksheet
 xlWorkSheet.Move(xlWorkBook.Worksheets[1]);
 // save workbook
 xlWorkBook.SaveAs(folder_name + "\\" + filename_no_ext,
 Excel.XlFileFormat.xlWorkbookNormal,
 default_value, default_value, default_value, default_value,
 Excel.XlSaveAsAccessMode.xlExclusive,
 default_value, default_value, default_value, default_value, default_value);
 // release objects
 releaseObject(xlWorkSheet);
 releaseObject(xlWorkSheetAllDim);
 releaseObject(xlWorkBook);
 releaseObject(xlApp);
 }

 private string numFormat(string value)
 {
 switch (value.Length - value.LastIndexOf("."))
 {
 case 2:
 // 1 decimal place
 return "0.0";
 case 3:
 // 2 decimal places
 return "0.00";
 case 4:
 // 3 decimal places
 return "0.000";
 default:
 return "";
 }
 }

 private string cellAddress(int row, int col)
 {
 // change cell address from (100, 1) to (A100) style
 string prompt = (row + "\n\t" + col + "\n\t");
 if (row < 1 || row > 1048576)
 {
 TaskDialog.Show("Excel Row Number", "Error - must be within 1 - 1048576!!");
 return null;
 }
 if (col < 1 || col > 16384)
 {
 TaskDialog.Show("Excel Column Number", "Error - must be within 1 - 16384!!");
 return null;
 }
 // convert column number to alphabetical reference

 int remainder = 0;
 string result = "";
 for (int i = 0; i < 3; i++)
 {
 // get remainder after division by 26
 remainder = ((col - 1) % 26) + 1;
 if (remainder != 0)
 {
 // match the remainder to alphabets A to Z where A is char 65
 // precede the alphabet to the previous result
 result = Convert.ToChar(remainder + 64).ToString() + result;
 }
 col = ((col - 1) / 26);
 // do it three times
 }
 // append row number to alphabetical column reference
 result = result + row.ToString();
 return result;
 }

 private void releaseObject(object obj)
 {
 try
 {
 System.Runtime.InteropServices.Marshal.ReleaseComObject(obj);
 obj = null;
 }
 catch (Exception ex)
 {
 obj = null;
 TaskDialog.Show("Excel file created","Exception Occurred while releasing object " + ex.ToString());
 }
 finally
 {
 GC.Collect();
 }
 }

 }
}

CLOSING

Having set up the Revit schedules and the corresponding Excel worksheets once, they can be
re-used as a set of templates for other Revit models. The number of chains of QS Desc ->
secondary calculations -> Codes can be expanded as and when they are encountered and
retained in the templates to serve future use to reduce the burden of re-defining every time.

Get into modelling which is easy and powerful as soon as possible. Understand it, identify the
limitations and suggest solutions to make it really productive. Increase our user base and join
force to push the software vendors to meet our need.

End

